Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
EBioMedicine ; 77: 103891, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1709186

RESUMEN

BACKGROUND: Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-ß production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. METHODS: We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. FINDINGS: In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients' respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. INTERPRETATION: SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. FUNDING: FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.


Asunto(s)
Bronquiolitis , COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Acetatos/metabolismo , Acetatos/farmacología , Animales , Antivirales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Bronquiolitis/tratamiento farmacológico , Bronquiolitis/metabolismo , Ácidos Grasos Volátiles/metabolismo , Humanos , Lactante , Pulmón/metabolismo , Ratones , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/fisiología , SARS-CoV-2
2.
Front Immunol ; 12: 752380, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1485056

RESUMEN

The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both genetic and environmental factors. Several viruses hijack the host genome machinery for their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2 infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven mechanisms, including DNA methylation and histone/chromatin alterations. These epigenetic phenomena may respond to enhanced viral replication and mediate persistent long-term infection and clinical phenotypes associated with severe COVID-19 cases and fatalities. Understanding the epigenetic events involved, and their clinical significance, may provide novel insights valuable for the therapeutic control and management of the COVID-19 pandemic. This review highlights different epigenetic marks potentially associated with COVID-19 development, clinical manifestation, and progression.


Asunto(s)
COVID-19/inmunología , Metilación de ADN/inmunología , Epigénesis Genética/inmunología , SARS-CoV-2/inmunología , COVID-19/genética , Humanos , Especificidad de Órganos , Pandemias
3.
Adv Exp Med Biol ; 1327: 119-127, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1316242

RESUMEN

Coronavirus disease 2019 (COVID-19) is a multiple organ disease caused by SARS-CoV-2 virus infection. Among the organs and tissues affected by the disease, the skin has received less attention. Skin is the largest tissue in the body and is responsible for temperature maintenance, protection against external dangers and dehydration, and other roles. Although the skin manifestations of COVID-19 are common, the lack of standardization in the description of its signs makes it difficult to group them together. Considering the literature available so far, the skin manifestations can be divided into 4 patterns: exanthem, urticarial lesions, vascular and acro-papular eruptions. The localization, age, onset, symptoms and severity vary among them. The treatment, when necessary, is usually focused on the inflammatory response control. The pathophysiological mechanisms seem to involve the apoptosis of keratinocytes as well as endothelial cell dysfunction, favouring the establishment of skin inflammation. The better characterization of the skin manifestations is essential to understand the possible effects of COVID-19 on skin as well as for the development of appropriate treatments.


Asunto(s)
COVID-19 , Exantema , Diagnóstico Precoz , Exantema/diagnóstico , Humanos , Pronóstico , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA